Prompt Templates and Automation: Scaling Your AI Workflows
As AI becomes integral to business operations, the ability to create reusable prompt templates and automate AI workflows becomes crucial for scaling efficiently and maintaining consistency across different use cases.
Understanding Prompt Templates
Prompt templates are reusable prompt structures with variables that can be dynamically filled based on specific inputs or contexts.
Basic Template Structure
Template:
"Analyze the {data_type} data for {company_name} and provide insights on {focus_area}. Format the response as {output_format}."
Variables:
Template Implementation
python
class PromptTemplate:
def __init__(self, template_string, required_variables):
self.template = template_string
self.required_vars = required_variables
def generate(self, **kwargs):
# Check all required variables are provided
missing_vars = [var for var in self.required_vars if var not in kwargs]
if missing_vars:
raise ValueError(f"Missing variables: {missing_vars}")
return self.template.format(**kwargs)
Usage
analysis_template = PromptTemplate(
"Analyze the {data_type} data for {company_name} and provide insights on {focus_area}.",
["data_type", "company_name", "focus_area"]
)
prompt = analysis_template.generate(
data_type="sales",
company_name="TechCorp",
focus_area="quarterly trends"
)
Template Categories and Use Cases
1. Content Generation Templates
Blog Post Template:
"Write a {word_count} word blog post about {topic} for {target_audience}.
Include:
Tone: {tone}
SEO keywords to include: {keywords}"
Variables:
2. Data Analysis Templates
Report Template:
"Create a {report_type} report based on the following data:
{data_input}
Analysis Requirements:
Format: {output_format}
Audience: {stakeholder_level}"
3. Communication Templates
Email Template:
"Compose a {email_type} email to {recipient_type} regarding {subject}.
Key points to address:
{key_points}
Tone: {tone}
Length: {length}
Include: {special_elements}
Context: {background_info}"
Variables:
4. Code Generation Templates
Function Template:
"Create a {language} function that {functionality}.
Requirements:
Style guide: {coding_style}"
Advanced Template Features
1. Conditional Logic
python
def generate_prompt(template_type, **kwargs):
base_template = "Analyze {data} and provide insights."
if template_type == "detailed":
base_template += " Include methodology, assumptions, and limitations."
elif template_type == "executive":
base_template += " Focus on high-level strategic implications."
elif template_type == "technical":
base_template += " Provide detailed technical analysis and code examples."
return base_template.format(**kwargs)
2. Nested Templates
python
class NestedTemplate:
def __init__(self):
self.sub_templates = {
"introduction": "Begin with {intro_style} introduction about {topic}.",
"analysis": "Provide {analysis_depth} analysis of {focus_areas}.",
"conclusion": "Conclude with {conclusion_type} and {cta_style}."
}
def generate_full_prompt(self, structure, **kwargs):
sections = []
for section in structure:
if section in self.sub_templates:
sections.append(self.sub_templates[section].format(**kwargs))
return " ".join(sections)
3. Dynamic Variable Validation
python
class ValidatedTemplate:
def __init__(self, template, validators):
self.template = template
self.validators = validators
def generate(self, **kwargs):
for var, value in kwargs.items():
if var in self.validators:
if not self.validators[var](value):
raise ValueError(f"Invalid value for {var}: {value}")
return self.template.format(**kwargs)
Example validators
validators = {
"word_count": lambda x: isinstance(x, int) and 100 <= x <= 5000,
"tone": lambda x: x in ["formal", "casual", "technical", "friendly"],
"urgency": lambda x: x in ["low", "medium", "high", "urgent"]
}
Automation Workflows
1. Sequential Processing
python
class PromptChain:
def __init__(self):
self.steps = []
def add_step(self, template, process_function):
self.steps.append((template, process_function))
def execute(self, initial_input):
current_input = initial_input
results = []
for template, processor in self.steps:
prompt = template.format(**current_input)
result = processor(prompt)
results.append(result)
# Update input for next step
current_input.update({"previous_result": result})
return results
Example usage
chain = PromptChain()
chain.add_step(research_template, ai_research_function)
chain.add_step(outline_template, ai_outline_function)
chain.add_step(writing_template, ai_writing_function)
2. Parallel Processing
python
import asyncio
class ParallelPromptProcessor:
def __init__(self, ai_function):
self.ai_function = ai_function
async def process_templates(self, template_configs):
tasks = []
for config in template_configs:
template = config["template"]
variables = config["variables"]
prompt = template.format(**variables)
tasks.append(self.ai_function(prompt))
results = await asyncio.gather(*tasks)
return results
Usage
configs = [
{"template": summary_template, "variables": {"document": doc1}},
{"template": summary_template, "variables": {"document": doc2}},
{"template": analysis_template, "variables": {"data": dataset}}
]
processor = ParallelPromptProcessor(ai_model.generate)
results = await processor.process_templates(configs)
3. Conditional Workflows
python
class ConditionalWorkflow:
def __init__(self):
self.rules = []
def add_rule(self, condition, template, variables):
self.rules.append((condition, template, variables))
def execute(self, context):
for condition, template, variables in self.rules:
if condition(context):
# Merge context with variables
merged_vars = {**context, **variables}
return template.format(**merged_vars)
return "No matching rule found"
Example usage
workflow = ConditionalWorkflow()
workflow.add_rule(
lambda ctx: ctx["urgency"] == "high",
urgent_template,
{"response_time": "immediate"}
)
workflow.add_rule(
lambda ctx: ctx["audience"] == "technical",
technical_template,
{"detail_level": "high"}
)
Template Management Systems
1. Template Registry
python
class TemplateRegistry:
def __init__(self):
self.templates = {}
self.categories = {}
def register(self, name, template, category=None, metadata=None):
self.templates[name] = {
"template": template,
"category": category,
"metadata": metadata or {},
"created_at": datetime.now(),
"usage_count": 0
}
if category:
if category not in self.categories:
self.categories[category] = []
self.categories[category].append(name)
def get_template(self, name):
if name in self.templates:
self.templates[name]["usage_count"] += 1
return self.templates[name]["template"]
raise ValueError(f"Template '{name}' not found")
def search(self, query, category=None):
results = []
for name, data in self.templates.items():
if category and data["category"] != category:
continue
if query.lower() in name.lower() or query.lower() in str(data["metadata"]).lower():
results.append(name)
return results
2. Version Control for Templates
python
class VersionedTemplate:
def __init__(self, name):
self.name = name
self.versions = []
def add_version(self, template_string, variables, changelog=""):
version = {
"version": len(self.versions) + 1,
"template": template_string,
"variables": variables,
"changelog": changelog,
"created_at": datetime.now()
}
self.versions.append(version)
def get_version(self, version_number=None):
if version_number is None:
return self.versions[-1] # Latest version
for version in self.versions:
if version["version"] == version_number:
return version
raise ValueError(f"Version {version_number} not found")
def rollback(self, version_number):
target_version = self.get_version(version_number)
self.add_version(
target_version["template"],
target_version["variables"],
f"Rollback to version {version_number}"
)
Production Deployment Strategies
1. A/B Testing Templates
python
class TemplateABTester:
def __init__(self):
self.experiments = {}
def create_experiment(self, name, template_a, template_b, split_ratio=0.5):
self.experiments[name] = {
"template_a": template_a,
"template_b": template_b,
"split_ratio": split_ratio,
"results_a": [],
"results_b": []
}
def get_template(self, experiment_name, user_id):
experiment = self.experiments[experiment_name]
# Consistent assignment based on user_id
if hash(user_id) % 100 < experiment["split_ratio"] * 100:
return experiment["template_a"], "A"
else:
return experiment["template_b"], "B"
def record_result(self, experiment_name, variant, success_metric):
experiment = self.experiments[experiment_name]
if variant == "A":
experiment["results_a"].append(success_metric)
else:
experiment["results_b"].append(success_metric)
2. Performance Monitoring
python
class TemplateMonitor:
def __init__(self):
self.metrics = {}
def track_usage(self, template_name, response_time, quality_score, user_satisfaction):
if template_name not in self.metrics:
self.metrics[template_name] = {
"usage_count": 0,
"response_times": [],
"quality_scores": [],
"satisfaction_scores": []
}
metrics = self.metrics[template_name]
metrics["usage_count"] += 1
metrics["response_times"].append(response_time)
metrics["quality_scores"].append(quality_score)
metrics["satisfaction_scores"].append(user_satisfaction)
def get_performance_report(self, template_name):
metrics = self.metrics.get(template_name, {})
if not metrics:
return "No data available"
return {
"usage_count": metrics["usage_count"],
"avg_response_time": np.mean(metrics["response_times"]),
"avg_quality": np.mean(metrics["quality_scores"]),
"avg_satisfaction": np.mean(metrics["satisfaction_scores"])
}
Best Practices for Template Systems
1. Design Principles
2. Quality Assurance
python
def validate_template_quality(template, test_cases):
results = []
for test_case in test_cases:
try:
prompt = template.format(**test_case["variables"])
# Test with AI model
response = ai_model.generate(prompt)
# Evaluate response quality
quality_score = evaluate_response(response, test_case["expected_criteria"])
results.append(quality_score)
except Exception as e:
results.append(0) # Failed case
return {
"average_quality": np.mean(results),
"success_rate": sum(1 for r in results if r > 0.7) / len(results),
"detailed_results": results
}
3. Documentation and Governance
Template automation transforms AI from a one-off tool to a scalable business asset, enabling consistent, high-quality AI interactions across your organization.